研究了Lévy稳定噪声激励下的双稳Duffing-van der Pol振子,利用Monte Carlo方法,得到了振幅的稳态概率密度函数.分析了Lévy稳定噪声的强度和稳定指数对概率密度函数的影响,通过稳态概率密度的性质变化,讨论了噪声振子的随机分岔现象,发现了不仅系统参数和噪声强度可以视为分岔参数,Lévy噪声的稳定指数α的改变也能诱导系统出现随机分岔现象.
This paper aims to investigate the influence of Lévy stable noise on a bistable Duffing-van der Pol oscillator. We obtain the stationary probability density function of amplitude for the Duffing-van der Pol oscillator by use of Monte Carlo method, and analyze the influences of the noise intensity and the stability index on the stationary probability density. Stochastic bifurcations are further discussed though a qualitative change of the stationary probability distribution, which indicates that not only system parameters and noise intensity can be treated as bifurcation parameters, but also the change of the stability index will induce stochastic bifurcations.