反距离权重(Inverse Distance Weighting,IDW)插值通常采用距离搜索策略选择插值参考点,当采样点集分布不均匀时,距离搜索策略使得参考点聚集一侧影响插值精度。自然邻近关系具有良好的自适应分布特性,可有效地解决参考点分布不均匀问题。结合自然邻近关系,提出自适应的反距离权重(Adaptive-IDW,AIDW)插值方法。首先对采样数据构建初始Delaunay三角网,然后采用逐点插入法,将待插值点插入初始Delaunay三角网中,局部调整得到新的Delaunay三角网,以待插值点的一阶邻近点作为IDW插值的参考点,使参考点自适应均匀地分布在待插值点周围,再进行IDW插值计算。利用AIDW插值方法对Franke函数、全国气温观测数据进行插值实验,结果表明此方法具有较高的精度,且减少了"牛眼"现象。