位置:成果数据库 > 期刊 > 期刊详情页
顾及各向异性的CSRBF空间插值及其在气温场重建中的应用
  • ISSN号:1672-0504
  • 期刊名称:《地理与地理信息科学》
  • 时间:0
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术]
  • 作者机构:[1]云南师范大学旅游与地理科学学院,云南昆明650050, [2]虚拟地理环境教育部重点实验室南京师范大学,江苏南京210023, [3]江苏省地理环境演化国家重点实验室培育建设点,江苏南京210023
  • 相关基金:国家自然科学基金项目(41271383); 云南师范大学博士基金项目(01300205020503113)
中文摘要:

径向基函数(Radial Basis Function,RBF)是一种确定性的多维空间插值模型,可以有效逼近任意维度的空间数据。RBF插值模型中,基函数形态参数直接影响插值精度。为了快速求解最佳形态参数,获取准确的插值结果,该文采用改进的逐点交叉验证(Improved Leave One Out Cross Validation,ILOOCV)方法求取最优形态参数,首先从形态参数取值区间内选定初始形态参数α,然后从n个已知点中顺序选出一个点,使用剩下的n-1个已知点构建RBF插值模型,计算被取出点处真实值与插值结果的误差,循环n次,累计交叉验证误差,再依次从形态参数取值区间选取下一个值,重复操作,建立形态参数α与累计交叉验证误差之间的函数映射关系,最后通过最小化交叉验证误差来获取最佳形态参数。以我国东北地区气象观测数据进行实验,对ILOOCV方法进行验证,结果表明ILOOCV方法选取最佳形态参数使其插值结果比较精确,是一种可行的RBF形态参数优化方法。

英文摘要:

Radial Basis Function(RBF)can effectively approximate arbitrary dimension spatial data,which is a deterministic multivariate spatial interpolation method.In RBF interpolation model,the shape parameter in the basis function has a direct impact on the accuracy of the interpolation.In order to get optimal shape parameter which leads to smallest interpolation error and obtains the most accurate interpolated results,the Improved Leave One Out Cross Validation(ILOOCV)approach is applied in this paper.First,the initial shape parameterαis selected from the shape parameter interval which are divided by the step const value,then sequentially choose one point from then known points as the verify point and use the n-1remaining known points to calculate the RBF interpolation model.After that,the interpolated value of the point which are taken away from the n known points by the RBF interpolation model is calculated and compared with the true value of the known point to get the interpolation error,then these operations are repeated for ntimes until all the points are left out to be chosen as the verify point and the cross validation interpolation error is accumulated.After all these steps have been done,another shape parameter from the shape parameter interval is taken according to the step const value and the leave one out cross validation is repeated until all the shape parameters have been used to calculate the accumulated cross validation interpolation error,then the mapping relationship between the selected shape parameter and the accumulated cross validation interpolation error is established.Finally,to minimize the accumulated cross validation interpolation error in each leave one out cross validation process to get the smallest error and take the correspondingαas the optimal shape parameter.The meteorological observation data in Northeast China are taken as examples to verify the feasibility and effectiveness of this approach.Results show that,the optimal shape parameter selected by ILOOCV turns out to be eff

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地理与地理信息科学》
  • 北大核心期刊(2011版)
  • 主管单位:河北省科学院地理科学研究所
  • 主办单位:河北省科学院地理研究所 北京大学遥感与地理信息系统研究所
  • 主编:
  • 地址:石家庄市长安区西大街94号
  • 邮编:050011
  • 邮箱:dlxxkx@vip.163.com
  • 电话:0311-86054904
  • 国际标准刊号:ISSN:1672-0504
  • 国内统一刊号:ISSN:13-1330/P
  • 邮发代号:18-27
  • 获奖情况:
  • 全国《中文核心期刊要目总览》核心期刊,河北省第六届优秀科技期刊,中国科技论文统计源期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:16233