位置:成果数据库 > 期刊 > 期刊详情页
J2 invariant relative orbits via differential correction algorithm
  • ISSN号:0567-7718
  • 期刊名称:《力学学报:英文版》
  • 时间:0
  • 分类:V212[航空宇航科学与技术—航空宇航推进理论与工程;航空宇航科学技术]
  • 作者机构:[1]School of Astronautics, Beihang University, Beijing 100083, China
  • 相关基金:The project supported by the Innovation Foundation of Beihang University for Ph.D. Graduates, and the National Natural Science Foundation of China (60535010).
中文摘要:

这篇论文为在 J 2 亲戚动力学发现不变的轨道描述一个实际方法。包括 J 2 不安与相对运动的 Hamiltonian 模型一起工作,为处于三身体的问题发现周期的轨道的有效微分修正算法被扩大到形成飞地球的轨道 ers。而非用轨道的元素,分析在物理空间直接被做,它与物理要求做一个直接连接。不变的轨道的 asymptotic 行为被它的稳定、不稳定的 manifolds 显示。相对轨道的时期数字地被证明与领导人卫星的上升节点时期稍微不同,并且对这现象的初步的解释被介绍。然后,在不变的轨道和需要的相对几何学被考虑的 J 2 之间的相容性,和为兼容配置的起始的价值的设计过程被建议。不变的轨道上的措施错误的影响被蒙特卡罗模拟也调查。

英文摘要:

This paper describes a practical method for finding the invariant orbits in Ja relative dynamics. Working with the Hamiltonian model of the relative motion including the J2 perturbation, the effective differential correction algorithm for finding periodic orbits in three-body problem is extended to formation flying of Earth's orbiters. Rather than using orbital elements, the analysis is done directly in physical space, which makes a direct connection with physical requirements. The asymptotic behavior of the invariant orbit is indicated by its stable and unstable manifolds. The period of the relative orbits is proved numerically to be slightly different from the ascending node period of the leader satellite, and a preliminary explanation for this phenomenon is presented. Then the compatibility between J2 invariant orbit and desired relative geometry is considered, and the design procedure for the initial values of the compatible configuration is proposed. The influences of measure errors on the invariant orbit are also investigated by the Monte-Carlo simulation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《力学学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:卢天健
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:actams@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0567-7718
  • 国内统一刊号:ISSN:11-2063/O3
  • 邮发代号:2-703
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:352