位置:成果数据库 > 期刊 > 期刊详情页
Multiple Solutions for Discrete First-Order Periodic Problems
  • ISSN号:2095-2651
  • 期刊名称:《数学研究及应用:英文版》
  • 时间:0
  • 分类:O175.8[理学—数学;理学—基础数学] O175.1[理学—数学;理学—基础数学]
  • 作者机构:[1]Department of Mathematics, Northwest Normal University, Gansu 730070, P. R. China
  • 相关基金:Supported by the National Natural Science Foundation of China (Grant Nos. 11326127; 11101335), the Science Research Project of Cansu University (Grant No. 2013A-001) and NWNU-LKQN-11-23.Acknowledgements We thank the referees for their time and comments.
作者: Chenghua GAO[1]
中文摘要:

Let T > 1 be an integer, T = {0, 1, 2,..., T- 1}. This paper is concerned with the existence of periodic solutions of the discrete first-order periodic boundary value problems△u(t)- a(t)u(t) = λu(t) + f(u(t- τ(t)))- h(t), t ∈ T,u(0) = u(T),where △u(t) = u(t + 1)- u(t), a : T → R and satisfies∏T-1t=0(1 + a(t)) = 1, τ : T → Z t- τ(t) ∈ T for t ∈ T, f : R → R is continuous and satisfies Landesman-Lazer type condition and h : T → R. The proofs of our main results are based on the Rabinowitz’s global bifurcation theorem and Leray-Schauder degree.

英文摘要:

Let T 〉 1 be an integer, T = {0, 1,2,... ,T- 1}. This paper is concerned with the existence of periodic solutions of the discrete first-order periodic boundary value problems △u(t) - a(t)u(t) =λu(t) + f(u(t -τ(t))) - h(t), t ∈T, u(O) = u(T), = where △u(t)=u(t+1)-u(t),a:T→R and satisfies ∏ (T-1) t=0 (1+a(t))=1,τ:T→Z t-τ(t)∈T for t ∈T,f:R→R is continuous and satisfies Landesman-Lazer type condition and h : T → R. The proofs of our main results are based on the Rabinowitz's global bifurcation theorem and Leray-Schauder degree.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学研究及应用:英文版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:大连理工大学
  • 主编:王仁宏
  • 地址:大连理工大学应用数学系
  • 邮编:116024
  • 邮箱:
  • 电话:0411-84707392
  • 国际标准刊号:ISSN:2095-2651
  • 国内统一刊号:ISSN:21-1579/O1
  • 邮发代号:8-92
  • 获奖情况:
  • 1998年大连市优秀期刊奖,2000年大连市优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:36