摘要:运用不动点指数理论,作者研究了带参数的分数阶微分方程边值问题{D0a+u(t)=λf(t,u(t)),0〈t〈1,u(0)=u(1)=0,u′(0)=u′(1)=0多个正解的存在性,这里λ〉0是一个参数,3〈a≤4是一个实数,D0a+为标准Riemann-Liouville微分算子。
In this paper, we investigate the existence and nultiplicity of positive solutions for fractional differential equation boundary value problem {D0a+u(t)=λf(t,u(t)),0〈t〈1,u(0)=u(1)=0,u′(0)=u′(1)=0 where λ〉0 is a parameter, a ∈ R, 3 〈 a ≤ 4. D0a+ is the standard Riemann-Liouville differential, f: [0,1] × [0,∞)→ [-0,∞) is continuous.