设G=(V,E)是一个连通图,边集SCE是一个3-限制性边割,如果G-S是不连通的并且G-S的每个分支至少有三个点.图G的3-限制性边连通度λ3(G)是G中最小的一个3-限制性边割的基数.图G是λ3(G)连通的,如果3-限制性边割存在.G是λ3-最优的,如果λ3(G)=§3(G),其中§3(G)=min{/[U,U^-]/:U∈V,/U/=3 and G[U]是连通的}.G[U]表示V的子集U的导出子图,U=V\U表示U的补.[U,U^-]是一条边的一个端点在U中另一个端点在U^-中的边的集合.本文给出了不含三角形的图是λ3-最优的一些充分条件.
Let G = (V,E) be a connected graph. An edge set S C E is a 3-restricted- edge-cut, if G- S is disconnected and every component of G - S has at least three vertices. The 3-restricted-edge-connectivity λ3 (G) of G is the cardinality of a minimum 3-restricted- edge-cut of G. A graph G is λ3-connected, if 3-restricted-edge-cuts exist. A graph G is called λ3-optimal, if λ3(G) = §3(G), where §3(G) = min{/[U,U]/: U∈V, /U/ = 3 and G[U] is connected}. G[U] is the subgraph of G induced by the vertex subset U∈V, and U^-= V/U is the complement of U.[U,U^-] is the set of edges with one end in U and the other in U^-. In this paper, we give some sufficient conditions for triangle-free graphs to be λ3-optimal.