将光滑的球面基函数φ嵌入到由一个不充分光滑的球面基函数Ψ生成的本性空间N_Ψ中,并在L^p度量下研究由φ的变换生成的函数在空间N_Ψ中的逼近性质,得到了该L^p逼近的误差估计.
The authors embed the smooth radial basis functions in a larger native space generated by a less smooth kernel,and use them,in L^p metric,to approximate functions from the larger native space on the unit sphere.As a result,the L^p error bound between the best approximant and the target function is established.