为了研究纯电动客车复合制动系统制动力分配比例,提出了基于制动驾驶意图辨识的复合制动控制策略。基于隐形马尔科夫理论建立了双层制动驾驶意图辨识模型,运用道路试验数据对模型进行辨识验证。基于辨识出的驾驶意图和车速,以前后轮制动力分配比例、ECE法规、电机特性、滑移率、蓄电池特性、超级电容特性与传动系统特性为约束条件,制定了复合制动系统制动力分配策略,在9种工况下,应用Simulink对复合制动系统进行建模仿真。仿真结果表明:应用基于制动驾驶意图的纯电动客车复合制动控制策略后,在各种工况下,摩擦制动系统和电机再生制动系统能够协调稳定地工作,在保证制动安全性的前提下最大限度地回收了制动能量。低车速轻微制动时能量回收效率最高,可达到43.84%。高车速紧急制动时能量回收效率最低,仅为0.89%。
To research braking force distribution ratio of composite braking system for pure electric bus,a composite braking control strategy based on brake driving intention recognition was presented.A double-layer brake driving intention recognition model based on hidden Markov theory was set up and identified by using road experiment data.Based on recognized driving intention and vehicle speed,the distribution ratios of braking forces for front and rear wheels,ECE regulation,motor characteristics,slip ratios,battery characteristics,super capacitor characteristics and transmission system characteristics were taken as constraint conditions,the braking force distribution strategy of composite braking system was proposed,and the control strategy of composite braking system was simulated by Simulink software under 9 operating conditions.Simulation result shows that friction braking system and motor regenerative braking system can work coordinately and steadily under various operating conditions when the braking control strategy is applied,and braking energy can be recovered as much as possible under the premise of ensuring braking safety.Energy recovery efficiency is highest under slight brake when vehicle speed was low,and the efficiency can reach to 43.84%.Energy recovery efficiency is lowest under emergency brake when vehicle speed is high,and the efficiency is only 0.89%.2 tabs,21 figs,23 refs.