采用基于将Chapman—Enskog方法扩展到高阶近似的方法计算获得了温度范围在300--40000K,不同压力条件下氙等离子体的黏性、热导率和电导率.热力学平衡条件下的计算结果与文献报道的实验和计算结果符合良好,验证了计算方法和结果的合理性与准确性.在此基础上,计算获得了电子温度(咒)不等于重粒子温度(Th)的热力学非平衡和化学平衡条件下氙等离子体的输运性质,并分析了输运性质随压力和热力学非平衡程度变化的原因.
The viscosities, thermal conductivities and electrical conductivities of xenon plasma are obtained using Chapman- Enskog method expanded up to a higher approximation in a computation range from 300 to 40000 K under different pressures. In the local thermodynamic equilibrium regime, the results are compared with published experimental and computational results, showing that they are in good agreement with each other, which validates the accuracy of the computational method. The transport properties of xenon plasma are further obtained under the chemical equilibrium and thermal nonequilibrium, in which the electron temperature Te is different from that of heavy species Th. The evolutions of the transport properties with pressure and thermal nonequilibrium parameters (θ = Te/Th) are presented and analyzed.