位置:成果数据库 > 期刊 > 期刊详情页
基于PCA—RBF神经网络的浮选过程软测量建模
  • ISSN号:1005-2615
  • 期刊名称:《南京航空航天大学学报》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]鞍山科技大学电子信息与工程学院,鞍山114044
  • 相关基金:国家自然科学基金(60474058)资助项目.
中文摘要:

以浮选过程为研究对象,提出基于主元分析与RBF神经网络相结合的经济技术指标软测量模型。该模型依据工艺机理和经验知识对过程变量进行初选,采用主元分析方法对高维输入向量进行降维化简和辅助变量选择;采用新型混合递推算法对RBF神经网络参数进行优化。该算法包括修正网络中心的自适应聚类的简化型次胜者受罚竞争学习算法和修正网络权值的带遗忘因子的递推最小二乘算法。混合学习算法提高了网络参数辨识的收敛速度。仿真结果表明,软测量模型能很好地实现浮选过程经济技术指标的全局预测。

英文摘要:

The quality index soft-sensor model of flotation process is proposed based on principal component analysis (PCA) and radial basis function neural network (RBFNN). Firstly, the process prior knowledge and PCA method are used to deduce the input dimension for RBFNN and predigest model complexity, then a new hybrid recursive algorithm of RBFNN is developed. The algorithm includes simplified rival penalized competitive learning method (SRPCL) to make an adaptive clustering of network input pattern and recursive least squares method (LSM) with the forgetting factor,thus updating network weights. Simulation results show that the inference estimation model has high predictive accuracy and meets control requirements of the flotation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京航空航天大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:工业和信息化部
  • 主办单位:南京航空航天大学
  • 主编:宣益民
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:tnuaa@nuaa.edu.cn
  • 电话:025-84892726
  • 国际标准刊号:ISSN:1005-2615
  • 国内统一刊号:ISSN:32-1429/V
  • 邮发代号:28-140
  • 获奖情况:
  • 2005获高校科技期刊先进集体,2006获中国高校优秀科技期刊奖,2007获江苏省优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11886