位置:成果数据库 > 期刊 > 期刊详情页
基于并行化谱聚类的协同推荐算法研究
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:国家数字交换系统工程技术研究中心,郑州450002
  • 相关基金:国家自然科学基金(61171108); 国家重点基础研究发展(973)计划(2012CB315901;2012CB315905); 国家科技支撑(863)计划(2014BAH30B01)资助
中文摘要:

随着大规模网络数据的增加,可扩展性成为推荐系统的一个关键因素,为此提出一种基于并行化谱聚类的协同推荐算法.首先通过并行化改进的谱聚类方法对项目进行聚类;然后在基于用户的协同推荐算法基础上,结合已聚类的项目打分信息,提出一种改进的相似用户计算方法,并进行推荐;最后在数据集上进行测试.结果表明,该算法可以有效降低时间复杂度,推荐精确度和推荐效率也有显著提高.

英文摘要:

With the increase of large-scale network data, scalability has become a key factor in the recommendation system. A new collaborative recommendation algorithm is thus based on MapReduce parallel spectral clustering was proposed. First, items are clustered using the improved parallel spectral clustering method; Then, based on the user collaborative recommendation algorithm and combined with the clustered items' ratings, an improved calculation method for similar users is proposed to establish recommendation. The test results on the dataset show that the proposed algorithm can effectively reduce time complexity, which significantly improving its accuracy and efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237