位置:成果数据库 > 期刊 > 期刊详情页
采用影响力节点集扩展的局部社团检测
  • ISSN号:0253-987X
  • 期刊名称:《西安交通大学学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:国家数字交换系统工程技术研究中心,郑州450002
  • 相关基金:国家自然科学基金资助项目(61171108); 国家重点基础研究发展计划资助项目(2012CB315901); 国家科技支撑计划资助项目(2014BAH30B01)
中文摘要:

针对规模化网络中局部社团检测存在的对初始节点位置敏感、拓扑信息难以有效利用问题,提出了一种采用影响力节点集扩展的社团检测(IN-LCD)方法。首先定义了节点的局部影响力指标,通过该指标计算并构造了源节点附近的影响力节点子集,然后从影响力节点子集开始,以迭代更新的方式,进行连续的社团扩张,最后通过节点和社团相似性指标计算,完成整个局部社团的获取。IN-LCD方法从有效利用节点局部信息出发,通过最具影响力节点集合进行社团扩展,有效克服了局部社团检测对初始节点位置敏感的问题。在真实和人工网络数据集上的实验表明,IN-LCD方法与已有的最佳局部社团检测方法相比,识别性能提升了5.3%,更能有效应用于局部信息出发的社团检测场景。

英文摘要:

A local community detection algorithm based on influential nodes set(IN-LCD)is proposed to focus the problems that the local community detection in large-scale network is sensitive to the position of source nodes and the topology information is difficult to effectively use.A local influence index for nodes is defined,and a subset of influential nodes near the source node is calculated and constructed with the index.Then,the continuous expansion of the community is realized from the subset,and the whole local community is constructed through the calculation of the similarity index between nodes and community.The method uses the most influential nodes set to expand the community and effectively overcomes the sensitive problem of local community detection to initial node position.Experiments on real and artificial network data sets and a comparison with an existing local community detection method show that the recognition performance of the proposed IN-LCD is improved by 5.3%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人共和国教育部
  • 主办单位:西安交通大学
  • 主编:陶文铨
  • 地址:西安市咸宁西路28号
  • 邮编:710049
  • 邮箱:xuebao@mail.xjtu.edu.cn
  • 电话:029-82668337 82667978
  • 国际标准刊号:ISSN:0253-987X
  • 国内统一刊号:ISSN:61-1069/T
  • 邮发代号:52-53
  • 获奖情况:
  • 美国《工程索引》(EI光盘版)定期收录的中文期刊,《中文核心期刊目录总览》综合类核心期刊,科技部《科技论文统计与分析》统计源,《中国科学引文数据库》刊源,获全国高校优秀科技期刊一等奖,“百种中国杰出学术期刊”称号,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27275