设G是一个简单图,任意e∈E(G),定义e=uv在G中的度d(e)=d(u)+d(v),其中d(u)和d(v)分别为顶点u和v在G中的度数。设F是二分图G的一个1-因子,如果G中有包含F的Hamilton圈,则称G是F-Hamilton的;给出了二分图是凡Hamilton的一个新的充分条件。
Let G be a simple graph for each edge e = uv of graph G , let d(e) = d(u) + d( v), where d (u) and d(v) are degree of the vertices u and v respectively. Surpose G = (A ,B;E) is bipartite graph, F is a 1-factor of G , G is called F-Hamihonian if there exsiste a Hamilton cycle containing F in G. A necessary and sufficient condition is given for bipartite graph G = (A, B, E) to be F- Hamiltonian.