研究了非齐次线性微分方程f^(k)+Ak-1f^(k-1)+…+Adf^(d)+…+0f=F的解的增长性及零点,其中Aj(j=0,1,…,k-1)为有限级整函数,F为无穷级整函数.如果Ad(0≤d≤k-1)满足某些特殊条件,得到了上述非齐次线性微分方程解的性质。
The growth of solutions for the equation f^(k)+Ak-1f^(k-l)+…+Adf^(d)+…+A0f= F is investigated, where Aj( 1,2 ,…,k - 1 ) are entire functions with finite order, F is an entire function with infinite order. If the co- efficients Ad (0≤d≤k-1) satisfy certain conditions, the properties of solutions for this equation are obtained.