本文研究了一类高阶周期系数线性微分方程解的性质问题. 利用复分析的相关理论和方法, 获得了在一些假设条件下, 当方程的系数 As 起控制作用时, 方程 f^(k) + A^k-2f^(k-2) + ...+Asf^(s) + ... + A0f = 0 的任意两个线性无关解 f1,f2 满足λe(f1f2) ≥σe(As) 的结果, 推广了肖丽鹏的一个结果.
In this article,we investigate properties of solutions for higher-order periodic differential equations.By using theory and method of complex analysis,we obtain that under certain condition,when As of equation f^(k) + Ak-2^f(k-2) +...+ Asf^(s) +...+ A0f = 0 is the dominant coefficient,the e-type convergence exponent of zeros of the product of its two linearly independent solutions satisfies λe(f1f2) ≥ σe(As).The results obtained are generalization of a result due to Xiao Lipeng.