The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120-155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.
The marine macroalgae Enteromorpha prolifera was one of the main algal genera that occurred in the widespread green tides in Qingdao, China, during the summers of 2007, 2008 and 2010. It is thus a plentiful source of biomass and could be used as a biofuel. In this study, the pyrolytic characteristics and kinetics of E. prolifera were investigated using thermogravimetric analysis (TGA) method. Cornstalk and sawdust were used as comparisons. Pyrolytic characteristics were studied using TG-DTG (thermogravimetry-derivative thermogravimetry) curves. Three stages in the pyrolytic process were determined: dehydration, dramatic weight loss and slow weight loss. E. prolifera was pyrolyzed at a lower initial temperature than the two terrestrial biomass forms. The apparent activation energy values for the three types of biomass were calculated and the mechanism functions were determined using 16 different mechanism functions, frequently used in thermal kinetics analysis. Activation energy values varied with mechanism function and the range of activation energy values for E. prolifera, cornstalk, and sawdust were 25-50 kJ/mol, 60-90 kJ/mol and 120--155 kJ/mol, respectively. This indicates that E. prolifera has low thermal stability for pyrolysis and good combustion characteristics.