位置:成果数据库 > 期刊 > 期刊详情页
非线性动态系统的Wiener神经网络辨识法
  • ISSN号:1000-8152
  • 期刊名称:《控制理论与应用》
  • 时间:0
  • 分类:TP271[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]九江学院数字控制技术与应用江西省重点实验室,江西九江332005, [2]清华大学电力系统国家重点实验室,北京100084
  • 相关基金:基金项目:国家自然科学基金资助项目(50705039);中国博士后基金资助项目(20070420358).
作者: 吴德会[1,2]
中文摘要:

提出了一种新的Wiener神经网络结构并将其应用于非线性动态系统辨识问题.首先,用Wiener模型对非线性动态系统进行描述,将其分解成线性动态子环节串接非线性静态增益的形式.其次,设计一种新型的神经网络结构,使网络权值对应于相应的Wiener模型参数;并推导了基于反向传播的网络权值调整方法.最后,通过网络迭代训练,可同时得到线性动态子环节和非线性静态增益的模型参数.通过一个Wiener模型的数值仿真来验证方法的有效性,仿真结果表明所提辨识方法切实可行.

英文摘要:

A novel Wiener neural network structure is presented and applied to nonlinear dynamic system identification. Firstly, the nonlinear dynamic system is described by a Wiener model which consists of a linear dynamic part in cascade with a nonlinear static gain. Secondly, a novel neural network structure is designed, the weights in which are corresponding with the parameters of the Wiener model. Thirdly, backward-propagation methods for the adjustment of weights in the network are discussed. Finally, parameters of the linear dynamic part and the nonlinear static gain in the Wiener model are determined simultaneously by iterative training. A numerical simulation of Wiener model is provided to validate the effectiveness. Simulation results show that the suggested identification schemes are practically feasible.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084