给定一个n(n≥72)阶图G,满足q1(G)=min{d(u)+d(v):uv∈E(G)}≥8,得出结论:若围长g(G)≥5且q2(G)=min{d(ei)+d(ej):ejej E(L(G))且ei,ej∈E(G)}〉2√2n=1时,L(G)是次泛圈图;若围长g(G)≥4且q2^2(G)-2q2(G)〉8n时,L(G)是次泛圈图,而且2√2n+1,8n这两个界都是最好可能的。
Let G be a graph of order n ( n ≥ 72) which satisfies condition of q1( G ) = min{d ( u ) + d ( v ) : uv ∈ E ( G ) } ≥ 8.If girth g(G)≥5,q2(G)=min{d(ei)+d(ej):eiej E(L(G)) and ei,ej∈E(G)}〉2√2n+1,then line graph L(G)is subpancyclic.If girth g(G)≥4,q2^2(G)-2q2(G)〉8n then L(G)is subpancyclic.And the bound of 2√2n+1,8n all are the best possible