该文主要证明了若G=(V1,V2:E)是一个满足|V1|=|V2|=n≥sk的二分图,其中k,s,n为3个正整数且k≥2,s≥4,如果σ1,1(G)σ2[(1-1/s)n+k],那么对G的任意k条独立边e1,…,ek,G有一个包含k个点不交的圈C1,…Ck的2-因子,使得ei∈E(Ci),且|Ci|≥2s.
Let k ≥ 2, s ≥ 4, n be three integers and G = ( V1, V2 :E) be a bipartite graph with | V1| = | V2| = n ≥ sk , if σ 1,1(G) ≥ 2[ (1 - 1/s )n + k ] , then for any independent edges e1,…, ek, G contains a 2-factor with k cycles C1 ,…, Ck such that ei ∈ E(Ci) and |Ci| ≥ 2s .