欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Virial type blow-up solutions for the Zakharov system with magnetic field in a cold plasma
ISSN号:0022-1236
期刊名称:Journal of Functional Analysis
时间:2011.11.11
页码:2508-2528
相关项目:非线性波动系统孤立子与爆破解的动力学行为
作者:
Gan, Zaihui|Guo, Boling|Han, Lijia|Zhang, Jian|
同期刊论文项目
非线性波动系统孤立子与爆破解的动力学行为
期刊论文 25
同项目期刊论文
Geometric shape of invariant manifolds for a class of stochastic partial differential equations
非线性Klein-Gordon方程整体解存在的最佳条件
Sharp blow-up criteria for the Davey-Stewartson system in R-3
Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
Biharmonic nonlinear Schrodinger equation and the profile decomposition
Blow-up profile to solutions of NLS with oscillating nonlinearities
BLOW-UP, GLOBAL EXISTENCE AND STANDING WAVES FOR THE MAGNETIC NONLINEAR SCHRODINGER EQUATIONS
ASYMPTOTIC BEHAVIOR FOR A STOCHASTIC WAVE EQUATION WITH DYNAMICAL BOUNDARY CONDITIONS
On a class of nonlinear Schrodinger equations with nonnegative potentials in two space dimensions
ON THE CONCENTRATION PROPERTIES FOR THE NONLINEAR SCHRODINGER EQUATION WITH A STARK POTENTIAL
Strong instability of standing waves for Hartree equations with subcritical perturbations
The local and global existence of solutions for a generalized Camassa-Holm equation
Nonlocal Nonlinear Schrodinger Equations in R-3
Stability of standing waves for the L (2)-critical Hartree equations with harmonic potential
On the concentration properties for the nonlinear Schr\"{o}dinger equation with a Stark potenti
Sharp conditions of global existence and scattering for a focusing energy-critical Schr\"{o}din
LIMITING BEHAVIOR OF BLOW-UP SOLUTIONS OF THE NLSE WITH A STARK POTENTIAL
Approximating dynamics of a singularly perturbed stochastic wave equation with a random dynamical bo
一类具非齐次项的非线性Schrdinger方程驻波的稳定性
非对称磁场中单摆运动的稳定性
基于IOWHA算子的组合预测在中国入境旅游中的应用分析
Approximate Inertial Manifolds for Chemotaxis-Growth System
危机事件及政策变动对中国入境旅游的影响研究——基于剔除直接价格效应的中国入境旅游收入
Trial function method and exact solutions to the generalized nonlinear Schrodinger equation with time-dependent coefficient