位置:成果数据库 > 期刊 > 期刊详情页
交互式系统下基于任务重要性的DVFS技术
  • ISSN号:1003-3254
  • 期刊名称:《计算机系统应用》
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中电海康集团有限公司中国电科杭州物联网研究院,杭州310012, [2]中国科学技术大学计算机科学与技术学院,合肥230027
  • 相关基金:国家自然科学基金(61272131)
中文摘要:

本文提出了一种分布式的移动设备异常检测系统,该系统采用客户端-服务器架构,客户端程序在移动设备上持续提取特征并传送给服务器,服务器使用异常检测算法分析特征.根据人类日常活动的规律性以及用户使用移动设备的周期性,我们还提出了一种基于用户行为周期的异常检测方法,通过比较待检测特征向量和以往周期相近时间段的特征向量集的距离即可判定该特征向量是否异常,向量比较时采用不受特征间关联以及特征取值范围影响的马氏距离作为距离衡量的标准.实验证明我们采用的移动设备异常检测系统框架和检测方法能够有效提高对移动设备恶意程序的检测率.

英文摘要:

In this paper, we present a distributed anomaly detection system for mobile devices. The proposed framework realizes a client-server architecture, the client continuously extracts various features of mobile device and transfers to the server, and the server's major task is to detect anomaly using state-of-art detection algorithms. According to the regularity of human daily activity and the periodic of using mobile device, we also propose a novel user behavior cycle based statistical approach, in which the abnormal is determined by the distance from the undetermined feature vector to the similar time segments' vectors of previous cycles. We use the Mahalanobis distance as distance metric since it is rarely affected by the correlate and value range of features. Evaluation results demonstrated that the proposed framework and novel anomaly detection algorithm could effectively improve the detection rate of malwares on mobile devices.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机系统应用》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所
  • 主编:苏振泽
  • 地址:北京8718信箱
  • 邮编:100190
  • 邮箱:csa@iscas.ac.cn
  • 电话:010-62661041
  • 国际标准刊号:ISSN:1003-3254
  • 国内统一刊号:ISSN:11-2854/TP
  • 邮发代号:82-558
  • 获奖情况:
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2000版)
  • 被引量:15201