位置:成果数据库 > 期刊 > 期刊详情页
基于相空间重构的半导体制造系统日产出预测
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TH166[机械工程—机械制造及自动化]
  • 作者机构:[1]上海交通大学计算机集成制造研究所,上海200240
  • 相关基金:国家自然科学基金资助项目(50575137).
中文摘要:

半导体制造系统的生产作业计划与调度优化困难、可行性较低的现状,对半导体制造系统的日产出预测提出了需求。在对预测研究现状进行分析的基础上,针对半导体制造系统的日产出时间序列体现的非线性的确定性而又类似随机的特点,提出一种基于混沌相空间重构的蚂蚁—神经网络模型的预测方法。混沌相空间重构理论用于日产出时间序列的重构;神经网络用于日产出预测模型的构建;蚂蚁算法用于神经网络预测模型的权值和阈值参数的训练。通过某企业的实际生产数据进行测试,并与传统的预测方法比较,证明了该预测方法的有效性。

英文摘要:

In order to manage and control semiconductor wafer fabrication system (SWFS) more effectively, the daily output prediction data of wafer fabrication are often used in the planning and scheduling of SWFS. Because of nonlinear certainty and stochastic character of the daily output time series, an artificial neural network prediction method based on phase space reconstruction and ant colony optimization is proposed, in which the chaos phase space reconstruction theory is used to reconstruct the daily output time serials, the neural network is used to construct the daily output prediction model, the ant algorithm is used to train the weight and bias values of the neural network prediction model. Through testing with factory production data and comparing with traditional prediction methods, the effectiveness of the the proposed prediction method is proved.

同期刊论文项目
期刊论文 20 会议论文 4 著作 2
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603