将长期电压稳定场景下的协调电压控制问题用带有微分—代数方程约束的最优控制模型来描述,借助Radau排列技术将这个动态优化问题转化为大型非线性规划模型,并采用非线性原—对偶内点法求解。重点探讨如何应用多波前方法结合近似最小度排序提高求解稀疏线性修正方程的效率。以IEEE 17机162节点系统和新英格兰10机39节点系统作为算例,通过与近似最小度法和反向Cuthill-McKee法排序下三角分解结果进行对比,证实了所述方法在计算速度上的优越性。
A differential algebraic equation optimization model is used to describe the optimal coordinated voltage control problem in the long-term voltage stability scenario.This dynamic optimization problem can be converted into a large-scale nonlinear programming model using Radau collocation method.The nonlinear primal-dual interior-point method is then applied to solve this problem.This paper focuses on application of the multifrontal method to enhance the efficiency of solving sparse linear correction equations by referring to approximate minimum degree permutation.The IEEE 17-generator 162-bus test system and New England 10-generator 39-bus system are used to verify the effectiveness of the method proposed for comparison with the triangular decomposition using other permutation methods such as approximate minimum degree and reversed Cuthill-McKee.