位置:成果数据库 > 期刊 > 期刊详情页
基于互联网股市信息量和神经网络的股价波动率预测
  • ISSN号:1003-207X
  • 期刊名称:《中国管理科学》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京大学计算机所,北京,100871 北京大学计算机所,北京,100871 北京大学计算机所,北京,100871 北京大学计算机所,北京,100871
  • 相关基金:留学回国启动基金资助项目(4131522);国家自然科学基金资助项目(70571003)
中文摘要:

影响股市价格波动的因素有很多,本文从互联网信息量角度进行讨论.在一般情况下,当有较少的股市信息时,股市相对平静,股价变动也常常较小;当有较多的股市信息时,股市相对波动,股价变动常常也较大.互联网股市信息量的较大变化常常是该公司有特殊事件发生的反映,而股价波动必然是一种连带反应.本文首先从互联网获取金融信息,然后对互联网信息量进行了预处理,接着借助神经网络的学习功能,完成了对殷市信息量和股市价格波动的关联学习,最后将神经网络预测的结果以图形的方式显示给投资者,帮助投资者决策.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国管理科学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国优选法统筹法与经济数学研究会 中科院科技政策与管理科学研究所
  • 主编:蔡晨
  • 地址:北京海淀区中关村北一条15号(北京8712信箱)
  • 邮编:100190
  • 邮箱:zgglkx@casipm.ac.cn
  • 电话:010-62542629
  • 国际标准刊号:ISSN:1003-207X
  • 国内统一刊号:ISSN:11-2835/G3
  • 邮发代号:82-50
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:25352