以2010年绵阳市传统居民出行调查数据为基础,研究从传统居民出行调查数据中提取基于活动模型建模所需特性数据的方法和流程,并提出了以方式/目的地选择模型、时间选择模型和日活动模式选择模型为主体的层次选择模型结构,就数据处理、模型结构、变量选择、模型标定等提出一个完整的基于活动模型的分析方法,从而实现了基于活动的交通需求预测.
Based on the data from traditional household travel survey (HTS) of Mianyang City of Sichuan Province in China in 2010, the approach and process for extracting activitybased data from traditional HTS are discussed. A hierarchy selection model system, which consists of mode/destination choice model, time choice model and daily activity pattern choice model, is proposed. Finally, the activity-based traffic demand forecasting is achieved by the complete activity-based analysis approach proposed with detailed explanation of data processing, model structure, variable selection, and model calibration process.