位置:成果数据库 > 期刊 > 期刊详情页
基于EEMD的水资源监测数据异常值检测与校正
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:N945[自然科学总论—系统科学]
  • 作者机构:[1]中国航天系统科学与工程研究院研究生部,北京100048, [2]中国水利水电科学研究院水资源研究所,北京100038, [3]湖南农业大学理学院,长沙410128, [4]水利部水资源管理中心,北京100053
  • 相关基金:国家自然科学基金委员会-广东联合基金项目(U1501253); 广东省省级科技计划项目(2016B010127005)
中文摘要:

提出利用中位数法与集成经验模态分解(EEMD)相结合的方法对时间序列数据的异常值进行检测,首先通过中位数法对明显异常的数据进行初步筛选,再用EEMD对剩余数据进行分解,通过叠加低频分量可以拟合出大多数数据的整体变化趋势,而不受异常值的影响,从而根据偏差比率可有效检测出异常值。然后根据异常值检测后的时间序列数据的凹凸性变化趋势,用分段曲线拟合对异常值校正。最后,以H1自来水厂的日取水量数据为例进行实证分析。结果表明:提出的中位数法与EEMD相结合的方法能够有效地检测异常值,校正后得到的数据能够真实反映该水厂取用水情况,可为后续分析提供更加真实可靠的数据。

英文摘要:

In order to improve the availability and accuracy of online monitoring data of water resources, it is very important to detect and correct the outliers of monitoring data. The water resources monitoring data are non-linear and non-stationary time series data, the outlier detection method of the conventional time series did not take into account the convexity and concavity of time series. A combining median and ensemble empirical mode decomposition (EEMD) method was presented for outlier detection. Firstly, the outliers were preliminarily detected by the median method. And then the remaining data were decomposed by EEMD. The overall trend of most of the data can be fitted by superimposing the low- frequency components, but not affected by outlier, and the outlier can be detected effectively according to the deviation rate. Then, according to change of convexity and concavity of time series data after outlier detection, the method of piecewise curve fitting was used to correct the outliers. Finally, taking the daily water intake data of H1 waterworks as an example, the results showed that the method of combining median and EEMD can detect outliers effectively. The data obtained after correction can truly reflect the actual situation of water intake of waterworks. It can also provide more reliable data for subsequent analysis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884