位置:成果数据库 > 期刊 > 期刊详情页
基于PSO的Fisher准则下小样本最佳鉴别变换
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]解放军理工大学工程兵工程学院,南京210007, [2]江苏经贸职业技术学院会计系,南京210007, [3]Deptartment of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249
  • 相关基金:国家自然科学基金项目资助(No.50608069)
中文摘要:

小样本条件下,Fisher准则中类内散布矩阵一般是奇异的,无法直接求解.本文提出利用粒子群优化理论,在无需求类内散布矩阵逆的情况下求解Fisher准则下小样本最佳鉴别变换的方法.讨论了通过粒子群优化算法的位置——速度搜索模型获取最佳鉴别投影向量的方法和步骤.实验对比类内散布矩阵非奇异时,采用计算特征向量方法和本文方法的差异.分析验证小样本条件下类内散布矩阵奇异时,通过本文方法进行最佳鉴别变换的分类效果.实验证实本文算法的有效性.

英文摘要:

The within-class scatter matrix Fisher criterion is singular under small samples. Therefore, it can not be solved directly. A method based on PSO is proposed to get optimal discriminant transform under small samples without calculating inverse of the within-class scatter matrix. The methods and steps are discussed to get optimal discriminant projection vector by velocity-position search model of particle swarm optimization. The eigenvectors method and the proposed method are compared, when within-class scatter matrix is non-singular. Experimental results on both small and large samples demonstrate the accuracy of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169