位置:成果数据库 > 期刊 > 期刊详情页
基于灰预测和正态云的参数自适应蚁群遗传算法
  • ISSN号:1000-8152
  • 期刊名称:《控制理论与应用》
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西南交通大学交通运输学院,四川成都610031, [2]西南交通大学信息科学与技术学院,四川成都610031
  • 相关基金:国家自然科学基金资助项目(60776824)
中文摘要:

基于正反馈机制的蚁群算法,在进行全局搜索时,具有很强的全局收敛能力;遗传算法则具有快速的全局搜索能力.为了充分利用两种算法在寻优过程中的优势,提出一种带有参数自适应调节能力的混合算法.该算法利用灰预测对最大最小蚁群策略中的信息素上(下)界进行估计,以达到实时控制信息素限界、避免算法陷入局部最优的目的.同时,通过云模型建立了一系列的关联规则,利用算法在迭代过程中的反馈信息,可实现算法参数的自适应控制,有效减小算法对参数初始设置的依赖.最后,对车间调度问题(JSP)和旅行商问题(TSP)算例的仿真结果证明了算法的有效性.

英文摘要:

Ant colony algorithm with positive feedback has a good capability of global convergence;while the genetic algorithm(GA) is with a fast performance in global search.A hybrid algorithm with adaptive parameters is proposed to take advantages of the above two optimization algorithm.Using the grey prediction,we obtain in the ant colony strategy the estimates of the maximum(minimum) trail limits which are controlled for avoiding the immature convergence.Meanwhile,we employ the cloud models to build a set of association rules which are used to adaptively adjust algorithm parameters by information feedback during the iterative process,thus reducing the reliance on initial parameters.Simulation results for job-shop scheduling problem(JSP) and traveling salesman problem(TSP) validate the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084