无源性控制(PBC)是非线性控制的一个新的方向。不过对无源性控制一般都是定性的讨论。本文给出了一种与无源性控制结合的定量化方法。为求解无源性控制中的偏微分方程,需要先将非线性系统的数学模型转化成Hamilton模型。文中以一个磁悬浮系统的无源性控制为例,说明了这个Hamilton系统偏微分方程的求解方法,并给出了无源性控制律。本文的方法为非线性控制提供了一个实用的设计工具。
The passivity-based control (PBC) is a new direction of nonlinear control. But the method is basically a qualitative method. A quantifiable design method in combination with the PBC is provided in the paper. To solve the special partial differential equation (PDE) for PBC, the nonlinear system needs to be firstly transferred to a Hamiltonian model. The PDE for the Hamihonian system was solved with an electromagnetic levitation example. The passivity-based control law was also presented and discussed. The proposed method provides a practical design tool for the nonlinear control.