研究了一类具有非线性传染率的SIS网络传染病模型的动力学行为,给出传播阈值λc=〈k(k-1)φ(k)〉/〈k〉.结果表明,当β0〈λc时,无病平衡点E0=0局部稳定;当β0〉λc时,无病平衡点E0=0不稳定;进一步分析,当β0=λc时,系统在E0=0处出现Transcritical分支.
An SIS epidemic model has been investigated with nonlinear transmission rate in scale-free networks.The epidemic threshold λc=〈k〉/〈k(k-1)φ(k)〉 has been found.The results show that If β0λc,then the disease free equilibrium E0=0 is the locally stable;If β0λc,then the disease free equilibrium E0=0 is unstable;Lastly,when β0λc,we study the system′s Transcritical bifurcation exists at the disease free equilibrium E0=0.