讨论了随机与异质网络共存的SEIRS传染病模型,通过正平衡点的存在性给出基本再生数R0=((1-η)Aλ+ηβ)/μ.结果表明,当R0〈1时,无病平衡点(1,0,0,0)局部稳定;当R0〉1时,无病平衡点(1,0,0,0)不稳定,此时系统存在唯一的地方病平衡点,并且一致持续存在.最后通过数值仿真,验证了理论结果的正确性.
In this paper, we investigate an SEIRS epidemic model based on homogeneous and heterogeneous networks. The existence of endemic equilibrium is determined by the basic reproduction number R0 -- (1-η)Aλ+ηβ. The results show that if R0 〈 1, then the disease free equilibrium (1, 0, 0, 0) is locally asymptotically stable. Otherwise, if R0 〉 1, then the disease free equilibrium is unstable, and there exists a unique endemic equilibrium which is uniformly persistent in the time limit. Our simulation results verify the theory.