位置:成果数据库 > 期刊 > 期刊详情页
Flowing simulation of injection molded parts with micro-channel
  • ISSN号:0253-4827
  • 期刊名称:Applied Mathematics and Mechanics (English Edition
  • 时间:2014.3
  • 页码:269-276
  • 分类:TQ320.662[化学工程—合成树脂塑料工业]
  • 作者机构:School of Materials Science and Engineering,Fujian University of Technology, National Engineering Research Center for Advanced Polymer Processing Technology,Zhengzhou University
  • 相关基金:Project supported by the National Natural Science Foundation of China(Nos.51303027 and 11172271);the Scientific Research Staring Foundation,Fujian University of Technology of China(No.GY-Z13028);the Research Fund of Fujian Education Department(No.JA11189);the Research Fund for Enterprise Technology Innovation(No.2011-702-04)
  • 相关项目:透明聚碳酸酯注塑结构件成型-服役性能的数值和实验研究
中文摘要:

In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macrocomponent with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coeffcient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.

英文摘要:

In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学:英文版》
  • 主管单位:交通部
  • 主办单位:上海大学
  • 主编:周哲玮
  • 地址:上海市宝山区上大路99号上海大学122信箱
  • 邮编:200444
  • 邮箱:amm@department.shu.edu.cn
  • 电话:021-66135219 66165601
  • 国际标准刊号:ISSN:0253-4827
  • 国内统一刊号:ISSN:31-1650/O1
  • 邮发代号:
  • 获奖情况:
  • 上海市优秀科技期刊一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论
  • 被引量:541