位置:成果数据库 > 期刊 > 期刊详情页
一类合作型拟线性椭圆方程组多个解的存在性
  • ISSN号:1000-1832
  • 期刊名称:东北师大学报(自然科学版)
  • 时间:0
  • 页码:16-20
  • 语言:中文
  • 分类:O176.3[理学—数学;理学—基础数学]
  • 作者机构:[1]陕西师范大学数学与信息科学学院,陕西西安710062, [2]西南大学数学与统计学院,重庆400715
  • 相关基金:国家自然科学基金资助项目(10771173)
  • 相关项目:拟线性椭圆系统解的存在性与多重性
中文摘要:

利用Ekeland's变分原理和山路引理,考虑合作型拟线性椭圆系统-Δpu=λa(x)|u|p-2u+λ/β+1b(x)|u|α|v|βv+Fu(x,u,v),x∈Ω;-Δqu=λc(x)|v|q-2v+λ/α+1b(x)|u|α|v|βu+Fv(x,u,v),x∈Ω;u=v=0,x∈Ω在参数λ从左边无限接近于相应的非线性特征值问题的第一个特征值λ1时,系统有3个非平凡解.

英文摘要:

By using Ekeland's variational principle and Mountain Pass Theorem in critical point theory,for λλ1 sufficiently close to λ1,where λ1 is the first eigenvalue of the corresponding nonlinear eigenvalue problem,the following cooperative quasilinear elliptic systems{-Δpu=λa(x)|u|p-2u+λ/β+1b(x)|u|α|v|βv+Fu(x,u,v),x∈Ω;-Δqu=λc(x)|v|q-2v+λ/α+1b(x)|u|α|v|βu+Fv(x,u,v),x∈Ω;u=v=0,x∈Ω has three nontrivial solutions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北师大学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:东北师范大学
  • 主编:刘宝
  • 地址:长春市净月大街2555号
  • 邮编:130117
  • 邮箱:dslkxb@nenu.edu.cn
  • 电话:0431-89165992
  • 国际标准刊号:ISSN:1000-1832
  • 国内统一刊号:ISSN:22-1123/N
  • 邮发代号:12-43
  • 获奖情况:
  • 中文综合性科学技术类核心期刊,中国科学引文数据库来源期刊,中国科技论文统计源期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7830