建立了纳米溴化锂溶液二维降膜传热传质数学模型,以实验数据对模型进行验证。研究结果表明,在溴化锂溶液中加入纳米粒子可以显著增强溴化锂溶液对水蒸气的吸收速率,并且随着纳米粒子添加量的增大,纳米溴化锂溶液对水蒸气的吸收速率越大;在纳米粒子添加量相同时,纳米溴化锂溶液的水蒸气吸收速率随着溶液流量的增大而增大,且水蒸气吸收速率随溶液流量的变化趋势为对数曲线趋势;溶液的传质强化比随着纳米粒子添加量的增加而增大;在溴化锂溶液中加入纳米粒子后,吸收器的传质系数随着纳米粒子添加量的增大而增大,在溶液流量为1.2 L/min时,添加0.05%纳米粒子后,吸收器传质系数增加1.32倍,添加0.1%纳米粒子后,吸收器传质系数增加1.41倍,但是,传质系数增幅随着纳米粒子含量的增加而逐渐减弱。
The mathematic models of two-dimensional heat and mass transfer for lithium bromide (LiBr) aqueous solution added nano-partitles are developed and validated by experimental data. The research results show that: the nano-partieles can significantly improve the water vapor absorbing rate of the nano-fluid and the water vapor absorbing rate is increased with the amount of added nano-partieles;with the same amount of nano-partieles, the water vapor absorbing rate is increased with the flow rates of the nano-fluid and the water vapor absorbing rate as a function of flow rates shows logarithmic curve pattern; the mass transfer enhancement factor is increased with the increasing amount of nano-particles ; the mass transfer coefficient of absorber is increased with the amount of added nano-particles ; with the flow rate ( 1.2 L/min) of nano-fluid the mass transfer coefficient increased 1.32 and 1.41 times for adding 0.05% and 0.1% nano-particles respectively, but the amplification is reduced with the increasing of nano'svolume.