位置:成果数据库 > 期刊 > 期刊详情页
基于并行分类算法的电力客户欠费预警
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP311.5[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]福州大学数学与计算机科学学院,福州350116, [2]福建省网络计算与智能信息处理重点实验室,福州350116, [3]国网信通亿力科技有限责任公司,福州350001
  • 相关基金:国家自然科学基金资助项目(61300104,61300103); 福建省科技创新平台建设项目(2009J1007); 福建省自然科学基金资助项目(2013J01230,2013J01232); 福建省高校杰出青年科学基金资助项目(JA12016); 福建省高等学校新世纪优秀人才支持计划资助项目(JA13021); 福建省教育厅科技重点项目(JK2012003); 福建省科技厅产学重大项目(2014H6014)
中文摘要:

针对供电企业先消费后付款的经营模式可能造成用电客户因失信引发的欠费风险,需要在用电客户欠费行为发生之前实时快速地分析海量的用电用户的数据,给出潜在的欠费客户名单的问题,提出一种基于并行分类算法的电力客户欠费预警方法.首先,该方法使用基于Spark的随机森林(RF)分类算法对欠费用户进行建模;其次,根据用户以往历史用电行为和缴费记录使用时间序列进行预测得到其未来用电和缴费行为特征;最后,使用之前得到的模型对用户进行分类得到未来潜在高危险欠费用户.将该方法与并行化后的支持向量机(SVM)算法和在线序列极限学习机(OSELM)算法进行对比分析,实验结果表明,所提方法相对于对比算法在准确率上有较大提高,便于电费回收管理人员进行提前催缴,确保电费回收的及时性,有利于电力企业进行客户欠费风险管理.

英文摘要:

The " consumption first and replenishment afterward" operation model of the power supply companies may cause the risk of arrears due to poor credit of some power consumers. Therefore, it is necessary to analyze of the tremendous user data in real-time and quickly before the arrears’happening and provide a list of the potential customers in arrear. In order to solve the problem, a method for arrears alert of power consumers based on the parallel classification algorithm was proposed.Firstly, the arrear behaviors were modeled by the parallel Random Forest( RF) classification algorithm based on the Spark framework. Secondly, based on previous consumption behaviors and payment records, the future characteristics of consumption and payment behavior were predicted by time series. Finally, the list of the potential hig-risk customers in arrear was obtained by using the obtained model for classifying users. The proposed algorithm was compared with the parallel Support Vector Machine( SVM) algorithm and Online Sequential Extreme Learning Machine( OSELM) algorithm. The experimental results demonstrate that, the prediction accuracy of the proposed algorithm performs better than the other algorithms in comparison.Therefore, the proposed method is a convenient way for electricity recycling management to remind the customers of paying the electricity bills ahead of time, which can ensure timeliness electricity recovery. Moreover, the proposed method is also beneficial for consumer arrear risk management of the power supply companies.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679