研究了L^2(R)中小波框架{ψj,k)j,k={√sjψ(sj·-kb)}j,k∈z的膨胀列{sj}j的性质.如果{ψj,k)j,k是L^2(R)的一个小波框架,那么膨胀列是无界的,在某些条件下{sj}j∈z一定能够被重排为指标集Z上的一个非减数列,而且存在常数λ,μ∈(0,1)和p∈Z+,使得对νj∈Z有λ〈sj/sj+1,sj/sj+p〈μ.
The dilation parameters {sj}j are studied for {ψj,k)j,k={√sjψ(sj·-kb)}j,k∈z being a frame for L^2(R). It is obtained that if {ψj,k)j,k is a frame for L^2(R) then {sj}j is unbounded and λ〈sj/sj+1,sj/sj+p〈μ,where constants λ,μ∈(0,1) and p∈Z+, when ψ satisfies some conditions.