由考虑一个新分离 isospectral 特征值问题,合理类型的格子 soliton 方程的一个层次被导出。在产生层次的每个方程是在 Liouville 感觉和拥有的 bi-Hamiltonian 结构的 integrable,这被显示出。谎言代数学的半直接的和的二种类型被建议,由构造分离 integrable couplings 的一个适用的方法哪个被介绍使用。作为应用程序,产生系统的二种分离 integrable couplings 被得出。
By considering a new discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations of rational type are derived. It is shown that each equation in the resulting hierarchy is integrable in Liouville sense and possessing bi-Hamiltonian structure. Two types of semi-direct sums of Lie algebras are proposed, by using of which a practicable way to construct discrete integrable couplings is introduced. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.