BBS是网络舆情突发事件产生和传播最重要的场所之一,如何提前发现突发网络舆情是目前网络舆情研究的一个难点和热点问题,目前的研究仍处于探索阶段。利用粗糙集结合集成学习的方法建立网络舆情分类模型,能够在短时间内发现突发网络舆情,为用户和论坛管理人员及时、准确和方便地提取重要的主题信息,以便更好地对论坛进行管理。
BBS has been one of the major places of the generation and propagation of IPO(Internet public opinion).Now how to discover IPO ahead of time is a difficult and hot research topic,and the research on IPO is on its infancy.To discovery emergent IPO in short time,we built an IPO classification model which is based on rough set and ensemble leaning.It can provide timely,exactly and conveniently important topic information to users and BBS administrators.