位置:成果数据库 > 期刊 > 期刊详情页
一种基于网格的最近邻SVM新算法
  • ISSN号:1673-825X
  • 期刊名称:《重庆邮电大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆邮电大学人工智能研究所,重庆市400065
  • 相关基金:“973”计划前期研究项目(2008CB317111);国家自然科学基金项目(60873079);重庆市自然科学基金项目(20088132241)和重庆市教委科学技术研究项目资助
中文摘要:

支持向量机(SVM)算法往往由于分类面过分复杂或过学习而导致其泛化能力降低,现有的最近邻(NN—SVM)或K近邻(K—NN—SVM)方法解决了这类样本问题,但算法时间复杂度高,处理海量样本的能力有限。在NN.SVM算法的基础上引入了网格概念,提出了G—NN-SVM算法,该算法先对空间进行分块,然后在空间块内计算样本距离,找出最近邻,并结合分块序列最小优化算法(SMO)进行了算法实现。实验表明,该方法降低了计算复杂度,它在保持分类精度的同时,提高了训练和分类的速度,并具有较强的泛化能力,从而提高了原NN—SVM算法的海量数据处理能力。

英文摘要:

The generalization ability of SVM algorithm is decreased due to the complicated elassified-hyperplane or overlearning. Current methods, such as NN-SVM and K-NN-SVM, can solve this problem caused by samples, but they also have their limitations, such as algorithm time complexity and poor ability for processing massive samples. Hence, the grid is introduced, and G-NN-SVM algorithm based on NN-SVM is presented. After space blocking, this algorithm calculates distance between samples in the blocked space, identifies the nearest neighbor, and realizes the algorithm by combining with chunking SMO algorithm. Experiments show that the new algorithm reduces the computational complexity, improves the speed of training and classification, and maintains the classification accuracy at the same time. It has strong generalization ability, and enhances the mass data processing capability of original NN-SVM.

同期刊论文项目
期刊论文 35 会议论文 5 著作 2
同项目期刊论文
期刊信息
  • 《重庆邮电大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:重庆市教育委员会
  • 主办单位:重庆邮电大学
  • 主编:刘宴兵
  • 地址:重庆市南岸区崇文路2号
  • 邮编:400065
  • 邮箱:journal@cqupt.edu.cn
  • 电话:023-62461032
  • 国际标准刊号:ISSN:1673-825X
  • 国内统一刊号:ISSN:50-1181/N
  • 邮发代号:78-77
  • 获奖情况:
  • 全国优秀自然科学学报,重庆市十佳科技期刊,重庆市一级期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3754