Aquareovirus species vary with respect to pathogenicity,and the nonstructural protein NS80 of aquareoviruses has been implicated in the regulation of viral replication and assembly,which can form viral inclusion bodies(VIBs) and recruit viral proteins to its VIBs in infected cells.NS80 consists of 742 amino acids with a molecular weight of approximately 80 kDa.Interestingly,a short specific fragment of NS80 has also been detected in infected cells.In this study,an approximately58-kDa product of NS80 was confirmed in various infected and transfected cells by immunoblotting analyses using α-NS80 C.Mutational analysis and time course expression assays indicated that the accumulation of the 58-kDa fragment was related to time and infection dose,suggesting that the fragment is not a transient intermediate of protein degradation.Moreover,another smaller fragment with a molecular mass of approximately 22 kDa was observed in transfected and infected cells by immunoblotting with a specific anti-FLAG monoclonal antibody or α-NS80 N,indicating that the 58-kDa polypeptide is derived from a specific cleavage site near the amino terminus of NS80.Additionally,different subcellular localization patterns were observed for the 22-kDa and 58-kDa fragments in an immunofluorescence analysis,implying that the two cleavage fragments of NS80 function differently in the viral life cycle.These results provide a basis for additional studies of the role of NS80 played in replication and particle assembly of the Aquareovirus.
Aquareovirus species vary with respect to pathogenicity, and the nonstructural protein NS80 of aquareoviruses has been implicated in the regulation of viral replication and assembly, which can form viral inclusion bodies (VIBs) and recruit viral proteins to its VIBs in infected cells. NS80 consists of 742 amino acids with a molecular weight of approximately 80 kDa. Interestingly, a short specific fragment of NS80 has also been detected in infected cells. In this study, an approximately 58-kDa product of NS80 was confirmed in various infected and transfected cells by immunoblotting analyses using e-NS80C. Mutational analysis and time course expression assays indicated that the accumulation of the 58-kDa fragment was related to time and infection dose, suggesting that the fragment is not a transient intermediate of protein degradation. Moreover, another smaller fragment with a molecular mass of approximately 22 kDa was observed in transfected and infected cells by immunoblotting with a specific anti-FLAG monoclonal antibody or a-NS80N, indicating that the 58- kDa polypeptide is derived from a specific cleavage site near the amino terminus of NS80. Additionally, different subcellular localization patterns were observed for the 22-kDa and 58-kDa fragments in an immunofluorescence analysis, implying that the two cleavage fragments of NS80 function differently in the viral life cycle. These results provide a basis for additional studies of the role of NS80 played in replication and particle assembly of the Aquareovirus.