位置:成果数据库 > 期刊 > 期刊详情页
李群均值学习算法
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:2012
  • 页码:900-908
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]苏州大学计算机科学与技术学院,苏州215006
  • 相关基金:国家自然科学基金资助项目(No.61033013)
  • 相关项目:基于认知模型的图像不变性特征理论和关键技术
作者: 高聪|李凡长|
中文摘要:

首先分析李群均值的计算方法,在此基础上,进一步提出李群均值学习算法,其思想是在李群流形上寻找一个由总体样本内均值的李代数元素决定的单参数子群,这个单参数子群是原李群上的一条测地线,定义样本到测地线投影的概念,同时将李群样本向该测地线投影,并尽可能使投影后各类别间的散度与类内散度比值最大化,从而实现非线性李群空间的类别判别.实验表明,基于李群均值的学习算法和KNN、FLDA算法相比,具有较好的分类效果.

英文摘要:

The method of mean computation on Lie group manifold is analyzed, and Lie group mean learning algorithm is proposed. The main idea of the algorithm is to find a one-parameter sub-group on the original Lie group which is decided by a Lie algebra element of intrinsic mean of all samples. The one-parameter sub-group is a geodesic on the original Lie group. Then, the projection of the sample to the geodesic is defined, and all samples to the geodesic are projected. In order to implement the discrimination in nonlinear Lie group space after projection, the ratio of between-class variance and within-class variance is maximized. The experimental results show that Lie group based algorithm is better than KNN, FLDA algorithms in classification performance.

同期刊论文项目
期刊论文 86 会议论文 13 获奖 3 专利 2 著作 3
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169