回顾了在热力学(唯象理论)、统计力学、量子力学及固体物理等理论的基础上所建立的单相均匀介质的微观(电子、原子、离子、分子等)结构—宏观(介电、导电、击穿、老化等)性能之间的相互关系。由于工程电介质常用的高聚物绝缘材料是一类软物质,结构上具有极宽(10^-10-10^-3m)的空间尺度,运动单元和运动形式也有极宽的松弛时间谱(10^-10~10^-4s),同时为了改善单相材料的宏观性能,优化在不同外界因素作用下材料的综合性能,常采用多相复合电介质,其微观结构在空间上极为复杂,且运动时间尺度也极为广泛。因此,依据物理学的还原论和层展现象,提出了要建立这类材料的介观结构—宏观性能之间的相互关系,要从材料微观尺度与短时的破坏建立(或外推)出它的寿命目前仍有许多问题有待解决。并首次提出了如何从时空层次去深入理解和控制材料宏观性能的新概念。
Here we have firstly summarized the relationship between microscopic(electron,atom,ion and molecule) structure and macroscopic(dielectric,conductive,breakdown and aging) property established by using the thermodynamic,statistic,quantum mechanics and solid state physics,and based both on the multi-hierarchy of space scale of architectures and relation time of motive units and forms for conventional polymeric insulating materials and their corresponding composites,especially nanocomposites with very complex molecular,morphological and organic structures,and on the reductionism of physics and emergent phenomena;secondly presented that there are still many unsolved problems,mainly in establishing the relationship between mesoscopic structure and macroscopic property,and in predicting the life-time of insulating materials from the microscopic,even mesoscopic scales and short-term damage or aging extent,finally offered a new concept firstly of how to understand in depth and control the macroscopic property of materials by using space-time hierarchy.