位置:成果数据库 > 期刊 > 期刊详情页
基于多分辨分析的脑电癫痫波自动检测
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华东理工大学信息科学与工程学院,上海200237, [2]第二军医大学附属长海医院脑电图室,上海200433
  • 相关基金:基金项目:国家自然科学基金资助项目(60543005,60674089);上海市重点学科资助项目(B504)
中文摘要:

分析了小波多分辨分析特征提取的特点,提出了八通道脑电信号癫痫波自动检测的方法。每个通道的信号利用小波变换进行五层分解,以提取小波变换各子带的小波系数和信号偏差组成特征值计算自适应阈值,并将其应用到关键子带,提取出信号中的癫痫波。研究的重点是对脑电信号进行分解选择合适的小波:确定适当的分解层次以及自适应阈值的计算。实验结果表明,方法能够为癫痫脑电的特征提取提供快速而有效的手段。

英文摘要:

This paper proposed a new scheme for detecting epileptiform activity in 8-channel EEG based on the characteristic of a multi-resolution analysis. The EEG signal on each channel was decomposed to five levels using discrete wavelet transform. Formed wavelet coefficients and standard deviation of all 8-channel raw data to compute adaptive threshold, which applied on sub-bandsl, 2 and 3. Then extracted the spike portion of EEG signal extracted from the raw data. The key points of this research work were identification of a suitable wavelet for decomposition of EEG signals, recognition of a proper resolution level, and computation of a dynamic threshold. The experiment results show that the proposed method offers a fast and effective measure for detecting epileptiform activity in human EEG.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049