位置:成果数据库 > 期刊 > 期刊详情页
基于序列输入的神经网络模型算法及应用
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2014.6.6
  • 页码:62-66
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]东北石油大学计算机与信息技术学院,黑龙江大庆163318
  • 相关基金:国家自然科学基金项目(61170132)
  • 相关项目:量子过程神经网络模型及算法研究
作者: 肖红|李盼池|
中文摘要:

为提高神经网络的逼近能力,提出一种基于受控Hadamard门设计的量子神经网络模型及算法.该模型输入为多维离散序列,可用矩阵描述,行数为输入节点数,列数为序列长度.模型为3层结构,隐层为量子神经元,输出层为普通神经元.量子神经元由量子旋转门和多位受控Hadamard门组成,利用多位受控Hadamard门中目标量子位的输出向输入端的反馈,实现对输入序列的整体记忆,利用受控Hadamard门中控制位和目标位之间的受控关系获得量子神经元的输出.基于量子计算理论设计了该模型的学习算法.该模型可高效地获取输入序列的特征.实验结果表明,当输入节点数和序列长度满足一定关系时,该模型明显优于普通BP神经网络.

英文摘要:

To enhance the approximation capability of neural network, a quantum neural network model based on the controlled-Hadamard gates is proposed. This model takes a multi-dimensional discrete sequence as the input, which can be described by a matrix where the number of rows denotes the number of input nodes, and the number of columns denotes the length of discrete sequence. This model consists of three layers, the hidden layer consists of quantum neurons, and the output layer consists of common neurons. The quantum neuron consists of the quantum rotation gates and the multi-qubits controlled-Hadamard gates. Using the information feedback of target qubit from output to input in multi-qubits controlled Hadamard gates, the overall memory of input sequence is realized. The output of quantum neuron is obtained from the controlled relationship between the control bits and target bit of controlled-Hadamard gates. The learning algorithm is designed in detail according to the basis principles of quantum computation. The characteristics of input sequence can be effectively obtained. The experimental results show that, when the input nodes and the length of the sequence satisfy certain relations, the proposed model is obviously superior to the common BP neural network.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887