设U=Tri(A,M,B)是一个三角代数,其中A和B是实数域或复数域F上含单位元的代数,M是一个忠实的左A-模和忠实的右B-模,ξ≠0,1.本文证明了U上每个ξ-Lie可乘双射Ф(即Ф(AB-ξBA)=Ф(A)Ф(B)-ξФ(B)Ф(A)对所有的A,Bε U均成立)都是ξ-Lie环同构。作为应用,得到上三角块矩阵代数和套代数上ξ-Lie可乘双射的完全刻画。
Let U=Tri(A,M,B)be a triangular algebra,where A and B are unital algebras over a real or complex field F,and M is a faithful left A- odule as well as a faithful right B-module.For ξ≠0,1,we show that every ξ-Lie multiplicative bijective map Ф:U→U is additive and thus a ξ-Lie ring isomorphism.As applications,ξ-Lie multiplicative bijective maps on upper triangular block matrix algebras and Banach space nest algebras are characterized completely.