设A是Banach空间X上的标准算子代数,Ф是A上的满射.证明了Ф满足(T-S)R=0←→(Ф(T)-Ф(S))Ф(R)=0当且仅当Ф是同构或共轭同构的倍数;Ф满足(T-S)R+R(T-S)=0←→(Ф(T)-Ф(S))Ф(R)+Ф(R)(Ф(T)-Ф(S))=0当且仅当Ф是同构,反同构,共轭同构,或共轭反同构.
Let A be a standard operator algebra on a Banach space X, and Ф : A → A be a surjective map. It is shown that Ф satisfies that (T- S)R = 0 ←→ (Ф(T) - Ф(S))Ф(R) = 0 for all T, S, R E A if and only if Ф is a scalar multiple of an automorphism or a conjugate automorphism; Ф satisfies that Ф(I) = I and (T - S)R + R(T - S) = 0 ←→ (Ф(T) - Ф(S))Ф(R) + Ф(R)(Ф(T) - Ф(S)) = 0 for all T, S, R ∈A if and only if Ф is an automorphism, or an anti-automorphism, or a conjugate automorphism, or a conjugate anti-automorphism.