通过对1+1维含噪声Kuramoto-Sivashinsky(KS)方程进行数值计算,得到其在饱和状态下的表面宽度分布率并与Kardar-Parisi-Zhang(KPZ)方程进行比较.结果表明,1+1维含噪声KS方程的表面宽度分布率标度函数受有限尺寸效应影响较小,并与KPZ方程具有相近的表面宽度分布率标度函数.
Roughness distributions of 1 + 1 dimensional noisy Kuramoto-Sivashinsky(KS) equation at steady states are obtained and compared with Kardar-Parisi-Zhang(KPZ) equation’s with numerical simulation.It is shown that the scaling functions of roughness distributions of the noise KS equation in 1 + 1 dimensions show small finite-size effects.They are in good agreement with the Kardar-Parisi-Zhang(KPZ) equation’s.