设P是一个奇素数,(G,J)是一个对,这里J是一2-(v,p,1)设计,G是J的一个可解区传递自同构群.如果u〉(p3/4+1)^p-1,则v是一个素数q的方幂,且G要么旗传递,要么G≤AГL(1,u).进一步,当n为奇数时,p=q或G是奇阶的.
Let p be an odd prime number and (G,J) be a pair, where J is a 2 (v,p, 1) design and G is a group of automorphism of (d so that G is solvable and block-transitive on J. If v〉 ( p^3/4 + 1 )^p-1 , then vis a power of a prime q, and either G is flag transitive or G≤AГL(1,v). Moreover, when n is an odd number, p q or G has odd order.