在有界光滑区域Ω∈RN(N〉4)上,研究双调和方程△2u-λu=|u|2*-2u,x∈Ω,u=(δu)/(δn)=0,x∈δΩ,其中2*=2N/(N-4)是临界指数.对于任意的λ〉0,利用变分方法可以得到上面方程非平凡解的存在性.
This paper study the following biharmonic problem on a smooth domain ΩRN(N 〉 4)△2u-λu = |u|2*-2u,in Ω,u =(δu)/(δn) = 0 onδΩ,where 2* = 2N/(N-4) is the critical exponent.Using variational method,we prove that the above problem has nontrivial solutions for any λ 〉 0.